Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ensemble Monte Carlo study of electron transport in wurtzite InN

Identifieur interne : 014518 ( Main/Repository ); précédent : 014517; suivant : 014519

Ensemble Monte Carlo study of electron transport in wurtzite InN

Auteurs : RBID : Pascal:99-0029667

Descripteurs français

English descriptors

Abstract

Electronic transport in wurtzite phase InN is studied using an ensemble Monte Carlo method. The model includes the full details of the first five conduction bands derived from the pseudopotential method and a numerically calculated impact ionization transition rate using a wave-vector- dependent dielectric function. Calculated results for electron transport at both low and high electric field are presented and compared with available results from simpler methods. The dependence of the relevant transport properties on the parameters is discussed, in particular in regards to the uncertainties in the band structure and coupling constants. It is found that at a field of 65 kV/cm that the peak electron drift velocity is 4.2×107 cm/s. The peak velocity in InN is substantially higher than in GaN. The velocity field curve presents a noticeable anisotropy with respect to field direction. The peak velocity decreases to 3.4×107 cm/s for a field of 70 kV/cm in the direction perpendicular to the basal plane. The electron velocity at the onset of impact ionization reaches a value slightly lower than 2.0×107 and 1.0×107 cm/s for fields applied in the direction parallel and perpendicular to the basal plane. The low field mobility has been determined to be in the range of 3000 cm2/V s. The determination of the ionization coefficients is somewhat uncertain due to the lack of knowledge of the high energy phonon scattering rates. Nevertheless, the calculations presented here of the ionization coefficients and quantum yield provide a reasonably accurate estimate of the ionization process. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0029667

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ensemble Monte Carlo study of electron transport in wurtzite InN</title>
<author>
<name sortKey="Bellotti, Enrico" uniqKey="Bellotti E">Enrico Bellotti</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>School of Electrical and Computer Engineering, Georgia Tech, Atlanta, Georgia 30332-0250</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>School of Electrical and Computer Engineering, Georgia Tech, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Doshi, Bhautik K" uniqKey="Doshi B">Bhautik K. Doshi</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>School of Electrical and Computer Engineering, Georgia Tech, Atlanta, Georgia 30332-0250</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>School of Electrical and Computer Engineering, Georgia Tech, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Brennan, Kevin F" uniqKey="Brennan K">Kevin F. Brennan</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>School of Electrical and Computer Engineering, Georgia Tech, Atlanta, Georgia 30332-0250</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>School of Electrical and Computer Engineering, Georgia Tech, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Albrecht, John D" uniqKey="Albrecht J">John D. Albrecht</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ruden, P Paul" uniqKey="Ruden P">P. Paul Ruden</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0029667</idno>
<date when="1999-01-15">1999-01-15</date>
<idno type="stanalyst">PASCAL 99-0029667 AIP</idno>
<idno type="RBID">Pascal:99-0029667</idno>
<idno type="wicri:Area/Main/Corpus">015C70</idno>
<idno type="wicri:Area/Main/Repository">014518</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band structure</term>
<term>Carrier mobility</term>
<term>Computerized simulation</term>
<term>Conduction bands</term>
<term>Dielectric function</term>
<term>III-V semiconductors</term>
<term>Impact ionization</term>
<term>Indium compounds</term>
<term>Monte Carlo methods</term>
<term>Pseudopotential methods</term>
<term>Theoretical study</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7220H</term>
<term>7145G</term>
<term>0250N</term>
<term>0270L</term>
<term>7115H</term>
<term>7120N</term>
<term>7280E</term>
<term>Etude théorique</term>
<term>Simulation ordinateur</term>
<term>Bande conduction</term>
<term>Fonction diélectrique</term>
<term>Ionisation choc</term>
<term>Structure bande</term>
<term>Semiconducteur III-V</term>
<term>Indium composé</term>
<term>Méthode Monte Carlo</term>
<term>Méthode pseudopotentiel</term>
<term>Mobilité porteur charge</term>
<term>Semiconducteur bande interdite large</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electronic transport in wurtzite phase InN is studied using an ensemble Monte Carlo method. The model includes the full details of the first five conduction bands derived from the pseudopotential method and a numerically calculated impact ionization transition rate using a wave-vector- dependent dielectric function. Calculated results for electron transport at both low and high electric field are presented and compared with available results from simpler methods. The dependence of the relevant transport properties on the parameters is discussed, in particular in regards to the uncertainties in the band structure and coupling constants. It is found that at a field of 65 kV/cm that the peak electron drift velocity is 4.2×10
<sup>7</sup>
cm/s. The peak velocity in InN is substantially higher than in GaN. The velocity field curve presents a noticeable anisotropy with respect to field direction. The peak velocity decreases to 3.4×10
<sup>7</sup>
cm/s for a field of 70 kV/cm in the direction perpendicular to the basal plane. The electron velocity at the onset of impact ionization reaches a value slightly lower than 2.0×10
<sup>7</sup>
and 1.0×10
<sup>7</sup>
cm/s for fields applied in the direction parallel and perpendicular to the basal plane. The low field mobility has been determined to be in the range of 3000 cm
<sup>2</sup>
/V s. The determination of the ionization coefficients is somewhat uncertain due to the lack of knowledge of the high energy phonon scattering rates. Nevertheless, the calculations presented here of the ionization coefficients and quantum yield provide a reasonably accurate estimate of the ionization process. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>85</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ensemble Monte Carlo study of electron transport in wurtzite InN</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BELLOTTI (Enrico)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DOSHI (Bhautik K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BRENNAN (Kevin F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ALBRECHT (John D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RUDEN (P. Paul)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Electrical and Computer Engineering, Georgia Tech, Atlanta, Georgia 30332-0250</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>916-923</s1>
</fA20>
<fA21>
<s1>1999-01-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0029667</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electronic transport in wurtzite phase InN is studied using an ensemble Monte Carlo method. The model includes the full details of the first five conduction bands derived from the pseudopotential method and a numerically calculated impact ionization transition rate using a wave-vector- dependent dielectric function. Calculated results for electron transport at both low and high electric field are presented and compared with available results from simpler methods. The dependence of the relevant transport properties on the parameters is discussed, in particular in regards to the uncertainties in the band structure and coupling constants. It is found that at a field of 65 kV/cm that the peak electron drift velocity is 4.2×10
<sup>7</sup>
cm/s. The peak velocity in InN is substantially higher than in GaN. The velocity field curve presents a noticeable anisotropy with respect to field direction. The peak velocity decreases to 3.4×10
<sup>7</sup>
cm/s for a field of 70 kV/cm in the direction perpendicular to the basal plane. The electron velocity at the onset of impact ionization reaches a value slightly lower than 2.0×10
<sup>7</sup>
and 1.0×10
<sup>7</sup>
cm/s for fields applied in the direction parallel and perpendicular to the basal plane. The low field mobility has been determined to be in the range of 3000 cm
<sup>2</sup>
/V s. The determination of the ionization coefficients is somewhat uncertain due to the lack of knowledge of the high energy phonon scattering rates. Nevertheless, the calculations presented here of the ionization coefficients and quantum yield provide a reasonably accurate estimate of the ionization process. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B20H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A45G</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00B50N</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B00B70L</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70A10</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70B80E</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7220H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7145G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>0250N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>0270L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7280E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Simulation ordinateur</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Computerized simulation</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bande conduction</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Conduction bands</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Fonction diélectrique</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Dielectric function</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Ionisation choc</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Impact ionization</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Structure bande</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Band structure</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Méthode Monte Carlo</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Monte Carlo methods</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Méthode pseudopotentiel</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Pseudopotential methods</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Carrier mobility</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fN21>
<s1>011</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9901M000400</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 014518 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 014518 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:99-0029667
   |texte=   Ensemble Monte Carlo study of electron transport in wurtzite InN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024